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Abstract: In this paper, exponentiated generalized inverted exponential
distribution is considered for Bayesian analysis. The expressions for Bayes
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and gamma priors..
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1. Introduction

The exponentiated generalized inverted exponential distribution (EGIED) was introduced by Oguntunde
et al. [1]. They obtained the statistical properties of this distribution. The model is positively skewed,
its shape could be decreasing or unimodal (depending on the values of the parameters) and it has an
inverted bathtub failure rate. The generalized inverse exponential distribution and the inverse
exponential distribution are found to be sub-models of this model. The use of this model in situations
where the risk is low at the initial stage, increases with time and then decreases (for example breast
cancer, bladder cancer). The probability density function of EGIED is given by
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where c and � are the shape parameters and � is the scale parameter.
The joint density function or likelihood function of (1) is given by
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The log likelihood function is given by
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Differentiating (3) with respect to � and equating to zero, we get the maximum likelihood
estimator of � which is given as
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2. Bayesian Method of Estimation

The Bayesian inference procedures have been developed generally under squared error loss function

2ˆ ˆ( , ) ( , )L � � � � � . (5)

The Bayes estimator under the above loss function, say, ˆ
s�  is the posterior mean, i.e.,

ˆ
s�  = E(�) (6)

Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using
symmetric loss function. Norstrom [4] introduced precautionary loss function is given as
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The Bayes estimator under this loss function is denoted by ˆ
P�  and is obtained as
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Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss
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 and whose minimum occurs at �̂ � �. Also, the loss function L(�) has been used in

Dey et al. [6] and Dey and Liu [7], in the original form having p = 1. Thus L(�) can written be as

L(�) = b[� – log
e
(�) – 1]; b > 0.        (9)

The Bayes estimator under entropy loss function is denoted by  and is obtained by solving the
following equation
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Wasan [8] proposed the K-loss function which is given as
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Under K-loss function the Bayes estimator of � is denoted by ˆ
K�  and is obtained as
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Al-Bayyati [9] introduced a new loss function which is given as
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Under Al-Bayyati’s loss function the Bayes estimator of � is denoted by �
Al
�  and is obtained as
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Let us consider two prior distributions of � to obtain the Bayes estimators.
(i) Quasi-prior: For the situation where we have no prior information about the parameter �,

we may use the quasi density as given by
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where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.
(ii) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter
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3. Posterior Density Under g1( )

The posterior density of � under g1(�), on using (2), is given by
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Theorem 1. On using (17), we have

� � � �
� �

� �� �
1

1

1
log 1 1 .

1
i

c
n c

xc

i

n d c
E e

n d

��
� �

�

� �� � � � � �� � � �� �� �� �� �� � � � �
� (18)

Proof. By definition,
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From equation (18), for c = 1, we have
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From equation (18), for c = 2, we have

� � � �� � � �� �
21

2

1

2 1 log 1 1 .i

n c
x

i

E n d n d e

��
� �

�

� �� �� � � � � � � � � �� �� � � �� �� �� �
� (20)



Parameter Estimation of Exponentiated Generalized Inverted Exponential Distribution via Bayesian...

Journal of Econometrics and Statistics, 1(1) © 2021 97

From equation (18), for c = –1, we have
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From equation (18), for c = c + 1, we have
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4. Bayes Estimators Under g1( )

From equation (6), on using (19), the Bayes estimator of � under squared error loss function is
given by
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From equation (8), on using (20), the Bayes estimator of � under precautionary loss function is
obtained as
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From equation (10), on using (21), the Bayes estimator of � under entropy loss function is
given by
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From equation (12), on using (19) and (21), the Bayes estimator of � under K-loss function is
given by
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From equation (14), on using (18) and (22), the Bayes estimator of � under Al-Bayyati’s loss
function comes out to be
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5. Posterior Density Under g2( )

Under g2(�), the posterior density of è, using equation (2), is obtained as
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Theorem 2. On using (28), we have
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Proof. By definition,
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From equation (29), for c = 1, we have
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From equation (29), for c = 2, we have
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From equation (29), for c = –1, we have
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From equation (29), for c = c + 1, we have
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6. Bayes Estimators Under g2( )

From equation (6), on using (30), the Bayes estimator of � under squared error loss function is
given by
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From equation (8), on using (31), the Bayes estimator of � under precautionary loss function is
obtained as
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From equation (10), on using (32), the Bayes estimator of � under entropy loss function is
given by
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From equation (12), on using (30) and (32), the Bayes estimator of � under K-loss function is
given by
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From equation (14), on using (29) and (33), the Bayes estimator of � under Al-Bayyati’s loss
function comes out to be
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Conclusion

In this paper, we have obtained a number of estimators of parameter of exponentiated generalized
inverted exponential distribution. In equation (23), (24), (25), (26) and (27) we have obtained the
Bayes estimators under different loss functions using quasi prior. In equation (34), (35), (36), (37)
and (38) we have obtained the Bayes estimators under different loss functions using gamma prior.
In the above equation, it is clear that the Bayes estimators depend upon the parameters of the prior
distribution. We therefore recommend that the estimator’s choice lies according to the value of the
prior distribution which in turn depends on the situation at hand.
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